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Fig. 1. Simpler summaries were often the best reading experience for participants with little to no background in a scientific topic.
However, readers with high topic familiarity, even those considered part of the general public (i.e., not a researcher), ignored more
information in low complexity summaries while still reporting these simple summaries as equally engaging as high complexity ones.
Our results provide guidance on generating plain language summaries for a wider range of general audiences.

Language models (LMs) show promise as tools for communicating science to the general public by simplifying and summarizing

complex language. Because models can be prompted to generate text for a specific audience (e.g., college-educated adults), LMs might

be used to create multiple versions of plain language summaries for people with different familiarities of scientific topics. However, it

is not clear what the benefits and pitfalls of adaptive plain language are. When is simplifying necessary, what are the costs in doing so,

and do these costs differ for readers with different background knowledge? Through three within-subjects studies in which we surface

summaries for different envisioned audiences to participants of different backgrounds, we found that while simpler text led to the best

reading experience for readers with little to no familiarity in a topic, high familiarity readers tended to ignore certain details in overly

plain summaries (e.g., study limitations). Our work provides methods and guidance on ways of adapting plain language summaries

beyond the single “general” audience.
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1 INTRODUCTION

A rich body of work in HCI has shown that for many interfaces, one size does not fit all. Adapting interfaces to different

users has the potential to improve usability [14, 87], aesthetic judgements [28, 69], and trust [61, 68]. Increasingly,

language styles, such as community language norms [26], formality [10], and text complexity [12, 95] have been the

focus of adaptable user interfaces. Work has shown that language styles can impact user behavior in online experiments

[10], counseling conversations [5], online communities [26], and security interfaces [98]. This work has highlighted the

benefits of adapting language to people with different background knowledge [12].

With the rise of language models (LMs), interfaces promising adaptable language have progressed rapidly. Models

like GPT-4 can ostensibly rewrite language for any reader by prompting the model to generate text for an envisioned

audience or persona (e.g., a 5th grader) [52, 81, 104]. This is especially enticing in scholarly and scientific communication,

where language styles (e.g., medical jargon) can present major communication barriers [85]. Research has explored

using models to adapt scientific papers for non-experts (referred to as general audience readers in this paper) [12, 44],

and paid services like Elicit,
1
or Explainpaper

2
promise to make scientific language easier to read and understand.

While adaptable language interfaces for communicating science are promising, it is not clear when and how to adapt.

Most research showing that general audience readers respond positively to simplified language has focused on a single

version of a simplified summary and a single general audience [31, 42, 44]. People have different knowledge and topic

familiarity (e.g., someone who has read popular science books on a subject compared to someone who has not) that

can impact how they respond to scientific information [15, 39, 74], suggesting that a simplified summary may be good

for some, while a more complex version may be advantageous for others. However, no work has empirically shown

this to be the case. Further, simplified summaries usually convey less information [8] and can unintentionally lead to

people being overconfident in their understanding [90]. In contexts where details are important to communicate, it may

be important to preserve all information for a reader, even at the cost of longer or more complex text (e.g., a medical

research paper [12]). This gap in research is particularly important for developers of new interactive text interfaces

[12, 63] because it is currently not clear what the benefits and pitfalls of adaptive text are: when is simplifying necessary,

what are the costs in doing so, and do these costs differ for readers with different background knowledge?

Here we investigate how changes in scientific text affect the reading experience of general audience readers, for the

first time taking into account varying levels of complexity in the text and background topic familiarity of the reader.

We focus on scientific text complexity, defined as a combination of simple language and information content (§2).

We introduce three RQs aimed at understanding how changes in complexity and information content affect reader

experience:

RQ1: How do participants of different backgrounds respond to human-written scientific text at different

complexity levels?

RQ2: How do participants of different backgrounds respond to machine-generated scientific text at

different complexity levels?

RQ3: How do participants respond to generated scientific summaries at different complexities if they

report similar information?

We started with studying expert-written summaries (RQ1) to establish what benefit we might expect from using

alternative complexity versions for different audiences, assuming no interference from imperfect text generation tools.

1
https://elicit.org/

2
https://www.explainpaper.com/
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We followed up with two studies using machine-generated summaries. In study 2 we used generated summaries with

no restriction on information content (RQ2), following prior work on generating scientific summaries for general

audience readers [11, 43]. In study 3 we evaluated generated summaries that aimed to preserve information content

in lower complexity summaries (i.e., explaining details rather than removing them) (RQ3). We ran within-subjects

online experiments on Mechanical Turk for each RQ (Study 1: 𝑁 = 199, Study 2: 𝑁 = 191, Study 3: 𝑁 = 203) evaluating

whether topic familiarity affected participants’ response to summaries written or generated for different envisioned

audiences at three levels of complexity.

We found that topic familiarity mattered for determining the ideal summary for a reader. While the lowest complexity

summaries were generally better for people with minimal topical knowledge (illustrated in the lower left quadrant

of Figure 1), participants with more topic familiarity reported similar reading experiences across the three summary

versions. Further, the lowest complexity summaries came with two costs to high familiarity participants. The first

was that low complexity summaries in studies 1 and 2 removed details and reported on less information than high

complexity summaries, shown with automatic and manual evaluations. This loss of information came with the benefit

of improving the reading experience for low familiarity participants, but there was no benefit for high familiarity

participants. The second, related cost was that high familiarity participants were more likely to skip sections of lower

complexity summaries in all three studies (illustrated in the upper left quadrant of Figure 1). The most commonly

skipped summary sections focused on a paper’s limitations, highlighting the risk that low complexity summaries have

for high familiarity readers.

Our findings provide guidance on when and how to adapt scientific language to general audiences readers. Given

our findings, we propose to only use the plainest language when an audience knows very little about a topic. In cases

where audiences might have extensive background knowledge (even if they are not researchers themselves), language

can be more complex—even drawn from the research paper—in order to convey more information and keep more

knowledgeable audiences engaged (§4 & 5). When it is vital to convey complete information, such as in a patient-clinician

context, plain language that explains all information can still be beneficial even if it is much longer, but only to those

with little knowledge of a scientific topic (§6). Our findings make the following contributions:

(1) Shows the effect of text complexity on general audience readers of varying topic familiarity (e.g., not comparing

doctors and patients, but comparing different patients). We found that plain language summaries are better for

those with little knowledge of a topic, and complex summaries, even those containing original scientific text, are

better for those with more background knowledge.

(2) Highlights the benefits and pitfalls of generating plain language summaries. When plain language summaries

matched a reader’s background, readers had better reading experiences (e.g., were more engaged and had an

easier time reading); however, plain language summaries often included less information and could lead to

increased skipping when readers were more familiar in a topic.

(3) Provides guidance on generating plain language for different audiences. Science communicators and interface

designers can use our findings and methodology (§5.1.1 & 6.1.1) to effectively provide multiple summaries of

scientific findings to different people and build adaptive text interfaces. We discuss this guidance further in §7.1.

While LMs make it possible to generate language for a wide range of contexts and people, there are also risks of

factually incorrect generations [67]. We discuss these risks in the context of science communication (§5.1.2) and the

need for expert oversight for generative systems (§7). Our work illustrates ways for automated methods to assist human

efforts in communicating scientific information to a wider range of people, going beyond a single general audience.

3
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2 LANGUAGE COMPLEXITY

In this paper we define language complexity based on prior work in readability, plain language summarization, and

science communication. Broadly we break down complexity along two dimensions: surface level, textual features of

the language (referred to as “plainness” in this paper) and the information conveyed by the language (referred to as

“information content”). In this work we realize different language complexities by writing or generating summaries to

different potential audiences (e.g., a high-school educated adult).

In most science communication writing, both plainness and information content are varied to produce text suitable

for different audiences. This joint variation is reflected in the guidelines for plain language summaries
3
and in the

strategies science writers use to communicate with interested publics [8]. At the same time, these two dimensions have

real-world constraints: there are situations in which technical words must be used to convey specific meaning, or where

there is a desire to understand the majority of the details in the original scientific article, such as a patient reading a

medical research paper or lab report [12, 76]. In studies 1 and 2, we allow plainness and information content to vary

based on the intended audience (§4 & §5). In study 3, we explicitly try to preserve information content by explaining

rather than removing details from the high complexity summaries to evaluate the effect longer plain summaries have

on readers of different backgrounds (§6).

3 RELATEDWORK

Below we cover additional prior work related to language personalization, plain language summaries for science

communication, and augmented reading.

3.1 Personalizing language

There is a rich literature on adaptive interfaces and personalization in many domains, including website design [86],

advertisement [46, 101], study recruitment [9], journalism [3], and education [35, 38, 77]. Usually personalization

focuses on adjusting visual elements, but work has also shown the benefit of adjusting language to different audiences.

Finkelstein et al. [38] showed that adjusting the dialect of a tutoring system could improve learning outcomes for children

using African American English. Also in the education domain, work has shown that adjusting learning environments

to learning styles or using personally-relevant examples can improve learning objectives [27, 53]. In the medical domain,

Dimarco et al. [34] proposed HealthDoc, a system that generated personalized patient pamphlets according to patient

demographic information, education, and health history. Prior work has found that such tailoring of patient pamphlets

can improve health outcomes, including smoking behavior and future health complications [66, 96, 100]. In journalism,

Adar et al. [3] introduced PersaLog, a system for authoring personalized news articles. Articles authored using PersaLog

presented alternative content (e.g., heat estimates for different areas) depending on user traits (e.g., a user’s location).

Past work has also personalized generated news articles [78], scientific definitions [71], recommended articles to

read [45], and the amount of text displayed in a website [107].

Previous adaptive language-based interfaces have either relied on experts to author multiple versions of content [3],

used rules and templates to automatically adjust content [34, 78], or focused on specialized populations (e.g., researchers

[71]). Manually writing versions of text for each possible reader is infeasible, and rule-based approaches are brittle and

only applicable to narrow content adaptation. In this paper we evaluate the feasibility of using modern NLP techniques

3
https://consumers.cochrane.org/PLEACS
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to automatically generate multiple versions of text across a range of language complexities to communicate scientific

information to different, non-specialized (i.e., general audience) readers.

3.2 Plain language summaries

Plain language summaries (PLS), also referred to as lay-summaries, patient summaries, or consumer summaries [99] are

becoming an increasingly common method for communicating scientific findings with the public. Shailes [93] surveyed

ten journals and organizations that produced plain language summaries, finding that while summaries might initially

be intended for one audience (e.g., undergraduates), often other people would engage with the summaries [88].

Studies have also explored how plain language summaries should be written based on empirical evidence from

readers. Santesso et al. [89] found that using structured headings and narrative flow improved comprehension compared

to paragraphs of text explaining results. Ellen et al. [36] interviewed participants about their preferences for plain

language summaries, finding that people prefer key message headings and bullets over paragraphs. Silvagnoli et al. [95]

explored the preferences of summary text complexity, measured by automated readability formulas, across different

age groups. They found that most people preferred a medium complexity, while the lowest complexity was viewed

as too simple and the highest complexity as too hard. Other work has studied how to present numerical results in

summaries [18], uncertainty in findings [4] and how summaries compare to other methods of science outreach, such

as infographics [17], press releases [51] and Wikipedia articles [7]. In this paper we investigate if there is a benefit to

adjusting the complexity of plain language summaries to different general audience readers, and if LMs are capable of

generating these summaries.

3.3 Augmenting scientific reading

New interaction techniques have augmented readers’ process to improve understanding and engagement, especially for

scientific text. Chaudhri et al. [20] introduced Inquire Biology, a biology textbook that allows students to view concept

definitions and ask open-ended questions about information in the textbook. Work has also developed new interaction

techniques for researchers reading papers, including surfacing definitions [47], searching over related work sections

[80], providing paper passages that answer natural language queries [109] and navigating concepts within a paper

[2, 50]. With the improved performance of language models like GPT-3, 3.5, and 4 [79], there has been dramatic growth

in augmented reading interfaces for scientific papers [63]. For the general public, August et al. [12] introduced Paper

Plain, a reading interface augmented with NLP to support general audience readers in approaching medical research

papers. Paper Plain includes a curated set of key questions for guiding readers to the most important information in

research papers. Augmented readers have also been released as products. Explainpaper
4
is an LM-powered reading

interface that allows users to ask questions over a paper and get simplified summaries of the paper.

Recent advances in NLP have also introduced automated methods to augment science communication [29, 44,

103]. Devaraj et al. [31] introduced a dataset of plain language summaries for clinical topics and a trained model for

simplifying medical information. Laban et al. [57] constructed a new dataset of simplification edits made on Wikipedia

articles, Basu et al. [13] introduced a dataset of simplification edits for medical texts, and Guo et al. [42] introduced a

new evaluation suite for plain language summarization. August et al. [11] introduced methods to generate definitions

at different levels of complexity. Shaib et al. [92] evaluated simplified summaries of biomedical papers generated by

4
https://www.explainpaper.com/
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1
2 3

Collect demographics
Read summaries Collect familiarity & 

reading measures

Repeated x3 with different articles

Complexity

Info. req.

High → original text 

Low →  simplified

Strict (S3) → simplify/elaborate by sentence

Loose (S1, S2) → simplify summary

or 

S1 S2, S3 

Source 

Fig. 2. Flowchart of the study method, with shared features of all studies listed once. Ordering of summaries were randomized.

GPT-3, finding that GPT-3 could effectively simplify and summarize language from single paper, but it struggled to

synthesize information across multiple papers.

Previous work for augmenting or generating scientific text either assumes there is a single ideal summary for all

readers, or that adapting language to an individual reader is always useful. To our knowledge, no work has investigated

if and when adaptation is important for scientific communication. This is of particular importance to developers of

augmented reading interfaces because it is currently not clear when augmentation or adaptation is necessary. For

example, do all general audience readers need a reading interface to provide a plain language summary of a scientific

paper? If so, should this summary look the same for everyone, or is there measurable improvement in reading experience

if the summary matches the background of the reader? In this paper we investigate how general audience readers with

different familiarity in a scientific topic respond to scientific text at different complexities to inform the development of

augmented reading interfaces for scientific text.

4 STUDY 1 – EXPERT-WRITTEN SUMMARIES

Study 1 focused on expert-written summaries to establish what benefit we might expect from alternative complexity

versions. The study answered our first research question:

RQ1: How do participants of different backgrounds respond to human-written scientific text at different

complexity levels?

Science writers adapt scientific language for general audiences. However, there is rarely a single general audience,

and writers may use different strategies to engage different general audiences [8, 84]. Study 1 investigated how adjusting

scientific language complexity affected people of different knowledge backgrounds.

6
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4.1 Method

The three studies shared the majority of their procedure, materials, participant recruitment, and analyses (Figure 2).

Below we report on the shared portions and those unique to study 1. Later, we report on differences in the methodology

of studies 2 (§5) and 3 (§6).

4.1.1 Procedure. Participants answered questions about their scientific background, read summaries of scientific papers

at three levels of complexity, and answered questions about the summaries. At the start of each experiment, participants

filled out a demographics questionnaire, including questions on their education, STEM experience, and interest in

scientific subjects. After the demographic questionnaire, participants read three article summaries, described in §4.1.2.

The articles and complexity levels were randomized. Each participant saw one of each complexity in random order.

Summaries were broken down into sections answering key questions about the paper, following prior work showing

that sections and headers were preferred by general audience readers [89]. The key questions were based on prior

work studying the key information that science communicators focus on in a paper [1, 8] and from questions general

audience readers found useful to determine relevant information in research papers [12]. Summaries were displayed as

a title and a list of accordions (Figure 3). Participants could open multiple accordions at once. The questions were:

(1) What did the paper want to find out?

(2) What did the paper do?

(3) What did the paper find?

(4) What are the limitations of the findings?

(5) What is the real world impact of this work?

Below the summary, participants could check a box requesting the original research paper. If participants checked

this box, then a link to the paper was provided at the end of the study. Participants were asked to read the summaries

for at least 30 seconds, though they could read for as long as they wanted. If participants clicked the continue button

before 30 seconds, they were prompted to read for at least 30 seconds. They could ignore this prompt by clicking the

continue button again. Participants on average took 143 seconds per article (std=103 seconds) for study 1, 100 seconds

(std=84) for study 2, and 137 seconds (std=78) for study 3. Participants then answered questions on their topic familiarity

and reading experience.

4.1.2 Materials.

Article selection. We selected research papers that had public appeal by sampling papers posted and widely discussed

in the large subreddit r/science in 2019. We randomly sampled 10 papers posted on r/science that contained a link to a

research paper (as opposed to a press release or news article), and that had a score within the top 10% of posts containing

research papers. We used the PSAW Python PushShift API for accessing r/science.5 The papers ranged in topics from

public policy to nanotechnology, reflecting the breadth of research papers posted and discussed on r/science.

Authoring the summaries. An expert science writer with over 5 years of science communication experience crafted

two versions of each summary. Each version was written for a different audience of a certain education level: a high

school student or a college educated adult. In addition, the writer extracted sentences from the original paper to answer

each key question. This constituted a third complexity aimed at other researchers. We defined these three complexity

levels as Low (high school student), Medium (college educated adult), and High (researcher). Because the original paper

5
https://psaw.readthedocs.io/en/latest/
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Fig. 3. The study interface for reading the article summaries. The accordions started closed.

text used a different voice than the other two versions, we lightly edited the High version by changing “we” to “the

researchers.” One author reviewed each summary version and provide feedback to the writer on language complexity

between the three versions in four weekly meetings, as well as asynchronously with Google Docs. The rest of the

authors reviewed the completed summaries to determine that each version was distinct from the others in language

complexity. The writer was paid $17.22 USD per hour. Table 2 lists word and sentence statistics for all summaries, and

Table 1 provides examples of the summaries. All summaries are provided in the supplementary.

8



Know Your Audience CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Source Complexity Summary

High These results demonstrate an unprecedented opportunity for development of

these nanorgs as renewable sugar-free microbial factories for the production of

biofuels and chemicals.

Expert - Study 1

Medium This work is some of the first to examine the feasibility of interfacing nanoscale
materials with living cells . . . which could have broader implications for
diagnostic and therapeutic applications of this technology.

Low This work is some of the first to be done investigating the possibility of using
nanoscale materials inside living cells . . . which has far-ranging applications
for medicine.

Machine - Study 2

Medium The study found that nanorobots ... can be used to externally regulate the
cellular function of living cells using electromagnetic stimuli such as light,
sound, or magnetic field.

Low This study found that nanorogs can be used ... to control living cells using light,
sound, or magnetic fields.

Machine - Study 3

Medium This study shows that nanoscale organisms (nanorgs) can be developed into
sustainable, sugar-free factories.

Low These findings show a new chance to create tiny organisms (called nanorgs) . . .
without using sugar, using sunlight in a way that can be reproduced on a larger
scale.

Table 1. Examples of the summaries. These summaries were under the heading “What are the real world impacts of the findings?” for
the same paper. Bolded purple text indicates examples of changes in information content between the summaries, and italicized
blue text indicates changes in plainness. For study 2, there was no information restriction in generated summaries. In study 3, there
was information restriction for generated summaries.

4.1.3 Measuring language complexity. We additionally report on automated measures of complexity for each summary

version in order to see how the generated summaries differ across complexity levels. Table 2 details the measures for

each generated version. We report on three automated measures: uncommon words (i.e., English words outside the top

1,000 most common), function word count, and language model perplexity. While these measures do not capture all

dimensions of complexity, they are measures for analyzing scientific complexity at scale used in prior work on adjusting

language in science communication [11, 42]. Each measure is described in more detail in Appendix A.

Table 2 reports the results of the automated measures. The Medium and Low machine generated summaries in

studies 2 and 3 had noticeable differences in average number of words, average proportion of uncommon English words

outside the top 1,000, average proportion of function words, and language model perplexity. Compared to the expert

written summaries, the generated summaries had more distinct differences in the automated complexity measures,

especially for generated text in study 2.

9
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Source Complexity # Wordsstd # Sentences Unc. Words ↑ Func. words ↓ Perplexity ↑
High 483.10107.02 16.704.03 0.550.04 0.270.03 94.6030.91

Expert - Study 1

Medium 369.6082.56 12.101.97 0.470.05 0.310.02 60.0814.84

Low 358.9098.92 11.503.21 0.430.05 0.320.02 53.689.96

Machine - Study 2

Medium 529.20182.48 20.807.05 0.510.04 0.310.03 64.1424.16

Low 259.0043.42 13.201.75 0.280.05 0.360.03 23.925.71

Machine - Study 3

Medium 878.90212.81 31.008.06 0.480.02 0.340.02 46.269.90

Low 1005.00273.63 37.709.91 0.370.03 0.370.02 34.404.83

Table 2. Average number of words and sentences, along with differences in automated complexity measures between in each summary
version. For study 2, there was no information restriction in generated summaries. In study 3, the summaries were generally longer
because they included more details from the High summaries (i.e., they had stricter information requirements). Arrows denote
expected increase (↑) or decrease (↓) in measure as complexity increases.

4.1.4 Participants. We recruited participants on Amazon Mechanical Turk with the slogan, “Read about interesting

scientific findings and answer questions about your experience.” Participants were paid $2.50 for completing the study.

Participants were required to have completed over 1,000 HITs with a minimum approval rating of 95% and be US-based.

For studies 1 and 3, participants were required to be master Turkers. This study was approved by our institution’s IRB.

We removed participants whose native language was not English (1 in study 1, 2 in study 2, and 3 in study 3) and

who indicated they had technical difficulties or were cheating on the studies in a final self-report survey (1 in study 1,

12 in study 2, and 0 in study 3). After removal, we had 199 participants for study 1, 191 for study 2, and 203 for study 3.

Table 3 lists participant demographics and topic familiarity.

Extrinsic motivations like payment can lead participants to maximize pay at the expense of data quality (e.g., by

rushing through a study [10, 106]). Studies 1 and 3 used Master Turkers, who have been shown to provide data quality

equivalent to intrinsically motivated participants (e.g., participants motivated by supporting science) [106]. After

finding comparable results between master and non-master workers in a study 2 pilot, we did not include the masters

requirement for study 2. However, we did have to remove more participants who had reported cheating during study 2.

While participants might have behaved differently (e.g., skipped less sections, §4.1.5) if they were interested in

the summaries for their own sake, we did not expect this to bias differences across complexity versions, due to the

within-subjects nature of the studies. Considering that prior work studying general audience readers of scientific articles

has found that readers may skip parts of an article [24], we are excited to investigate how our findings generalize to

readers motivated simply by interest in a topic.

4.1.5 Measures.

Topic familiarity. After each summary, participants rated their familiarity with the article’s topic on a 1—5 Likert-style

scale based on the question: “How familiar are you with the topic of this article?”
6
with 1 being “I have never heard

about this topic before” and 5 being “I have written research papers on this topic.” Table 3b details the topic familiarity

ratings for the three studies.

Reading experience ratings. We collected subjective ratings to understand how the different complexity levels affected

participants’ reading experience. Participants completed the ratings after reading each summary. These included:

6
Because participants were only ever presented summaries, not the original paper, in the study the summaries were referred to as ‘articles.’

10
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Study 1 Study 2 Study 3

Age

0-19 0 0 0

20-29 14 49 9

30-39 68 87 76

40-49 71 32 57

50-59 29 18 29

60-69 14 4 21

70-79 3 1 2

80+ 0 0 0

Gender

Male 98 96 93

Female 99 95 109

Prefer not to answer 2 0 4

Education

Pre-high school 0 1 0

High school 58 30 48

College 117 114 137

Graduate school 19 40 20

Professional school 5 6 1

# STEM courses

after high school

0 36 21 36

1–3 89 93 104

4–6 41 57 32

7–10 11 9 10

≥11 22 11 21

(a) Participant demographics

Familiarity Study 1 Study 2 Study 3

1 359 150 297

2 115 72 134

3 97 132 134

4 26 165 39

5 0 54 5

Total 597 573 609

(b) Topic familiarity based on question “How
familiar are you with the topic of this article?”
1=“I have never heard about this topic before”,
and 5=“I have written research papers on this
topic.”

Table 3. Participant demographics (a) and topic familiarity (b) for all studies

(1) Reading ease: Participants rated their reading difficulty on a 1–5 Likert-style scale based on the question: “How

easy was it for you to read the article?”

(2) Understanding: Participants rated their confidence understanding the paper on a 1–5 Likert-style scale based

on the question: “How confident do you feel in your understanding of the article?”

(3) Interest: Participants rated how interesting they found a summary on a 1–5 Likert-style scale based on the

question: “How interesting did you find the article?”

(4) Value: Participants rated how valuable they found the information in the summary on a 1–5 Likert-style scale

based on the question: “How much would you agree that this article contained valuable information?”

Skipped sections. We analyzed how many summary sections participants skipped in each complexity condition.

As described in §4.1.1, each summary was made up of five accordian drop-downs that participants could open. Each

accordian section began closed. Participants were not instructed to open all sections. To determine which sections were

opened, we logged click events for each accordian section.

Requested articles. A primary goal of science communication is to encourage audiences to engage further with science

[74]. We capture the potential for increased engagement with science by analysing how likely participants were to

request the original scientific article after reading a summary.
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4.1.6 Analysis. We comparedmeasures across the complexity versions using linearmixed-effects models (LMMs). LMMs

are commonly used to analyze data in which the same participant provides multiple, possibly correlated, measurements,

referred to as repeated measures [62] and have been used as an analysis tool in the behavioral sciences [25] and

human-computer interaction [47, 48].

We fit a model for each reading experience rating, number of skipped sections, and original article requests. Each

model contained fixed effects for the complexity version, topic familiarity, an interaction term for familiarity and

complexity, and random effects for paper and participant IDs. We conducted post-hoc two-sided 𝑡-tests for pairwise

comparisons to examine the differences in measures between pairs of complexity levels estimated by the linear mixed

effects models. These pairwise comparisons reveal not only what differences between measures are significant, but the

estimated differences 𝑑 between measures. Because 𝑑 is estimated by the linear mixed-effects model, it represents the

expected difference in some measure (e.g., reading ease), when controlling for the participant and paper random effects

in the model. For example, if the estimated difference 𝑑Low−High
in reading ease between two complexity options Low

and High is 0.894, we can interpret this difference as participants rated the Low complexity, on average, 0.894 points

higher for reading ease (out of 5) compared to the High complexity when controlling for participant and paper. We

report these differences to provide further intuition about the effect of different complexity levels. We also include

effect sizes, calculated using Cohen’s 𝑑 and denoted 𝑆𝑀𝐷 for standardized mean difference, as an additional measure of

effect beyond the estimated pairwise difference.

The reading experience measures used Likert-style scales, making parametric tests potentially not appropriate, we

report analogous non-parametric tests in Appendix B, which yield similar 𝑝-values and findings. For these analyses

we use the pymer4 Python package for fitting the models and pairwise comparisons. All 𝑡-tests were corrected from

multiple hypotheses using the Holm-Bonferroni correction. The analysis was equivalent for the three studies. We report

all pairwise differences and test statistics in Appendix F.

4.2 Results

Table 8 in the appendix lists all pairwise differences.

4.2.1 Reading experience measures. Figure 4a plots all participants’ ratings across summary complexities for study

1. Overall participants found the Low summaries most appealing. Across all measures there is a greater number

of high ratings and fewer low ratings as participants are presented with less complex summaries. Compared to

the High summaries, participants rated Low summaries as significantly easier to read (𝑑ease = 0.893, 𝑝 < 0.0001,

𝑆𝑀𝐷 = 0.99), understand (𝑑understand = 0.589, 𝑝 < 0.0001, 𝑆𝑀𝐷 = 0.77), and more interesting (𝑑interest = 0.381,

𝑝 = 0.018, 𝑆𝑀𝐷 = 0.55). Participants also rated the Medium summaries as significantly easier to read and were

more confident in their understanding compared to the High summaries (𝑑ease = 0.653, 𝑝 < 0.0001, 𝑆𝑀𝐷 = 0.71;

𝑑understand = 0.400, 𝑝 = 0.006, 𝑆𝑀𝐷 = 0.59).

Topic familiarity was a strong indicator of reading experience measures and interacted with summary complexity.

Looking at Figure 5, as familiarity increased, ratings across all metrics and complexity levels generally went up (i.e., the

orange bars shrink while the dark purple bars grow). Also apparent in Figure 5: at low familiarity, rating distribution

are most different across the complexity levels. As familiarity increases, though, there were fewer low ratings and more

high ratings for all complexity levels. This effect was also illustrated in the linear mixed effect models. Participants

who rated their familiarity with a summary’s topic lowest (1 on a scale of 1—5) rated the Low summaries as being

significantly easier to read, understand, more interesting, and containing more valuable information compared to the

12
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(a) Study 1 with expert-written summaries

(b) Study 2 with machine-generated summaries and no information restriction.

(c) Study 3 with machine-generated summaries and information restriction.

Fig. 4. Distribution of ratings for each subjective reading experience measure across complexity levels. The ratings were based on the
following questions: Reading ease: “How easy was it for you to read the article?”, Understanding: “How confident do you feel in
your understanding of the article?”, Interest: “How interesting did you find the article?”, Value: “How much would you agree that
this article contained valuable information?” Notice the greater number of high ratings (purple) and fewer low ratings (orange) as
participants are presented with less complex summaries.

High summaries in study 1 (𝑑ease = 1.490, 𝑆𝑀𝐷 = 1.27; 𝑑understand = 1.160, 𝑆𝑀𝐷 = 1.07; 𝑑interest = 0.943, 𝑆𝑀𝐷 = 0.80 ;

𝑑value = 0.509, 𝑆𝑀𝐷 = 0.49; 𝑝 < 0.0001 for all comparisons). Participants who were most familiar with the summary’s

topic, though, rated High complexity summaries as similarly easy to read and understand, and equally interesting

and valuable as Low and Medium summaries. Table 8 in the appendix lists all pairwise differences between reading

experience measures.

4.2.2 Skipped sections. Participants on average skipped 0.113 (std=0.536) sections (out of 5). Skipped sections were

lowest for the High summaries (mean=0.060, std=0.327) compared to the Low (mean=0.129, std=0.559) and Medium

(mean=0.149 std=0.661) summaries. Topic familiarity mattered for determining number of skipped sections. Participants

who rated their topic familiarity highest (4 on a 1—5 scale), clicked on significantly fewer sections in the Low summaries

compared to the High summaries (𝑑𝑢𝑛𝑐𝑙𝑖𝑐𝑘𝑒𝑑 = 0.682, 𝑝 = 0.008, 𝑆𝑀𝐷 = 0.68). Table 8 in the appendix lists all pairwise

differences between skipped sections. Across all studies, the most common section skipped by participants was the

paper’s limitations (“What are the limitations of the findings?”, 25% of skipped sections), the least common section was

the goals of the paper (“What did the paper want to find out?”, 13% of skipped sections).

13
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Fig. 5. Distribution of ratings for each reading experience measure across complexity and participant topic familiarity for study 1
(expert written summaries).

4.2.3 Original article requests. Participants on average requested the original article 14.7% of the time. Requests

were roughly similar across the complexity levels (Low: mean=14.5%, Medium: mean=15.5%, High: mean=14.0%).

Topic familiarity affected how likely participants were to request the original article depending on complexity level.

Participants with the second lowest familiarity (2 out of 5) requested the original article significantly less often in

the Low summaries compared to the High summaries (𝑑𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = −0.184, 𝑝 = 0.007, 𝑆𝑀𝐷 = −0.47). Table 8 in the

appendix lists all pairwise differences.

5 STUDY 2 - MACHINE-GENERATED SUMMARIES WITH NO RESTRICTION ON INFORMATION
CONTENT

The results from study 1 suggest that low complexity summaries are best for low familiarity participants, while high

familiarity participants were more likely to skip sections in low complexity summaries. We were curios if we would

see similar differences in complexity preference with machine-generated summaries. We therefore conducted study 2,

answering our second research question:

RQ2: How do participants of different backgrounds respond to machine-generated scientific text at

different complexity levels?

14
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There are methods to automatically adjust generated language complexity [11], but no work has explored the

interaction of generated language complexity and participant background knowledge. Here we follow prior work on

automated plain language summarization and allow generated text to vary information content freely [43, 57]. In study

3 we explore methods to preserve information through all complexity levels (§6).

5.1 Method

Below we describe generating summaries for study 2 and assessing their factuality. Please refer to §4.1 for shared

methodology of studies 1, 2, and 3.

5.1.1 Materials.

Generating the summaries. We generated summaries at different complexities in a two step process. In the first

step, we generated candidate summaries using GPT-3. GPT-3 is a language model commonly used in generation tasks,

including plain language summarization [16]. We adapted a preset prompt for GPT-3 to generate summaries with

varying complexity. The original prompt was “Summarize this for a second-grade student: [TEXT]” Our adapted

prompts for GPT-3 were 14 alternate prompts, from “first-grade student” to “twelfth-grade student”, along with “college

student” and “college-educated adult.” We used GPT-3 (davinci-003) in July 2022. with temperature set to 0.3 and the

rest of the parameters set to default OpenAI API settings. At the time we ran this study, more sophisticated systems like

ChatGPT had not yet been released. We investigate more sophisticated models (i.e., GPT-3.5 Turbo) in Study 3 (§6.1.1).

Because GPT-3 was not designed to explicitly vary text complexity, we additionally used the complexity ranker

from August et al. [11] to rank the GPT-3 generations on a gradient of complexity. The complexity ranker was a linear

discriminator trained to classify scientific text as either from a news article or research paper. The ranker used features

shown to be predictive of reading difficulty in scientific language, including technical word occurrences, proportion of

function words, and text length [11]. After scoring each generation for complexity, we selected the generation with the

highest and lowest score for the Low and Medium versions. For the High summaries, we used the original sentences

extracted from the paper by the writer in §4.1.2. More details on the GPT-3 generations are in Appendix C.

5.1.2 Assessing factuality in generated summaries. A major limitation of language models is that they can generate

text with meaning that was not part of the original input [67], referred to as hallucinations [41, 67]. While there are

methods for reducing hallucinations or encouraging factuality [40, 56, 65], no automated method guarantees factual

accuracy or fidelity to original text. In the context of science communication, such hallucinations can risk confusing or,

worse, misinforming readers. A reader might trust a hallucinated result opposite to what was reported in the original

paper [32], or be so confused by the contradictory evidence as to lose trust in the research.

Because of these risks, we advocate for NLP systems to be used in conjunction with experts. Plain language summaries

are often written by researchers, editors, or science writers [93, 99]. Authors could generate multiple versions of a

summary and then verify factual accuracy. In this way, we could lessen the workload of writing plain language

summaries, make summaries adaptable to different audiences, and protect against factually incorrect generations.

In the context of study 2 and 3, one author selected generations that did not contain factually incorrect information,

acting as the expert for checking generated summaries before publishing. In study 2, out of 120 generated summaries

(6 sections including the title × 10 papers × 2 complexities), 14 generations contained incorrect information. In all 14

cases, a replacement was found by selecting from at most 6 alternative generations. The average number of generations

the author looked at to find a replacement was 2.36. For study 3, while there were generations that were ill-formed
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Fig. 6. Distribution of ratings for each reading experience measure across complexity and participant topic familiarity for study 2
(machine-generated summaries and no information restriction).

(e.g., the model asking for clarification on an acronym) there were no factually incorrect generations. This difference in

factuality might be due to improvements between GPT-3 (used in study 2) and GPT-3.5 (used in study 3).
7
Appendix E

contains more information on hallucinations in our generated summaries.

5.2 Results

5.2.1 Reading experience measures. Similar to study 1, participants in study 2 rated Low summaries as significantly

easier to read (𝑑ease = 0.535, 𝑝 < 0.0001, 𝑆𝑀𝐷 = 0.56) and understand (𝑑understand = 0.323, 𝑝 = 0.001, 𝑆𝑀𝐷 = 0.38) than

the High summaries. However, we observed two different results in this second study. First, while study 1 participants

found Medium summaries significantly easier to read and understand than High summaries, study 2 had no significant

difference between between the two complexities. Second, while study 1 participants did not rate the Low and Medium

summaries as significantly different, study 2 participants did rate Low summaries as significantly easier to read and

understand thanMedium summaries (𝑑ease = 0.472, 𝑝 < 0.0001, 𝑆𝑀𝐷 = 0.53; 𝑑understand = 0.279, 𝑝 = 0.004, 𝑆𝑀𝐷 = 0.29).

Figure 4b plots these ratings.

Topic familiarity again interacted with complexity to equalize reading experience measures. Similar to study 1,

participants with the lowest familiarity of a summary’s topic rated the Low summaries as being significantly easier

7
Because GPT-3.5 is a proprietary system, the full details of which have not been disclosed, we cannot be certain about whether or how factuality was

improved.
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to read, understand, more interesting, and containing more valuable information compared to the High summaries

(𝑑ease = 1.642, 𝑆𝑀𝐷 = 1.34 𝑑understand = 1.103, 𝑆𝑀𝐷 = 0.94 𝑑interest = 0.909, 𝑆𝑀𝐷 = 0.62 𝑝 < 0.0001; 𝑑value = 0.407,

𝑝 = 0.031, 𝑆𝑀𝐷 = 0.25 ). In contrast, participants with the highest familiarity (5 on a 1–5 scale) rated their reading

experience similarly between the complexity versions. Figure 6 plots these ratings.

5.2.2 Skipped sections. Participants on average skipped 0.785 (std=1.621) sections in study 2. While the overall rate

of skipped sections was higher than for study 1, the trend of more skipped sections for lower complexity summaries

held. Skipped sections were lowest for the High summaries (mean=0.749, std=1.543) compared to the Low (mean=0.849,

std=1.710) and Medium (mean=0.759, std=1.613) summaries. Similar to study 1, participants with the highest rated

familiarity (5 on a 1—5 scale) skipped significantly more sections in the Low summaries compared to the High summaries

(𝑑𝑢𝑛𝑐𝑙𝑖𝑐𝑘𝑒𝑑 = 0.900, 𝑝 = 0.011, 𝑆𝑀𝐷 = 0.35). This estimated difference between skipped sections constitutes close to a

full extra section skipped (e.g., skipping all of the summary’s limitations).

5.2.3 Original article requests. Participants on average requested the original article 52.5% of the time. Generally

participants requested the original article from the Low summaries more often (mean=55.5%) than either the Medium

(mean=48.2%) or High (mean=53.9%). In contrast to study 1, where low familiarity participants requested the original

article more for High summaries, participants in study 2 with the second lowest familiarity requested the original

article significantly more often in the Low summaries compared to the Medium summaries (𝑑𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = 0.214, 𝑝 = 0.036

𝑆𝑀𝐷 = 0.68). Table 9 in the appendix lists all pairwise differences.

The results from study 2 corroborate and expand on our findings from study 1. Participants with low familiarity

preferred generated low complexity summaries, while high familiarity participants again skipped sections of low

complexity summaries more often. One contrasting finding from study 2 was that some participants with low familiarity

requested the original article more often for low complexity summaries over more complex summaries. Given that we

observed similar findings from study 1 with expert-written summaries, the results of study 2 suggest that machine-

generated summaries are a viable method for efficiently adjusting language to different audiences.

6 STUDY 3 - MACHINE-GENERATED SUMMARIES PRESERVING INFORMATION CONTENT

Summaries from studies 1 and 2 had no restriction on what information needed to be included. This followed past

work in plain language summarization, where writers or models select some information to explain, and remove other

information (e.g., focusing on a single finding or concept for low complexity text) [8, 43, 97]. However, selectively

conveying information comes with the risk of removing information a reader might want [12], or giving a reader a false

sense of understanding [90]. Emboldened by newer, stronger models being released (e.g., ChatGPT, or GPT-4), we were

curious if generated text could preserve details from high complexity summaries in their low complexity counterparts,

potentially mitigating the risk of information loss. This motivates our third research question:

RQ3: How do participants respond to generated scientific summaries at different complexities if they

report similar information?

6.1 Method

Below we describe our method for generating summaries in study 3. Please refer to §4.1 for shared methodology of

studies 1, 2, and 3.

6.1.1 Materials.
17



CHI ’24, May 11–16, 2024, Honolulu, HI, USA August et al.

Generating detail-preserving summaries. In studies 1 and 2, there was no requirement that summaries preserve

information (i.e., it was acceptable if a simpler summary removed some information). For study 3, we sought to generate

low complexity summaries that preserved information content (i.e., were plainer but included all details). We did this

by leveraging stronger models released after study 2 and developing a prompting technique to simplify each sentence

separately, prompting the model to elaborate on details rather than remove them. In simplification literature, both

removing and elaborating on details are common tasks [13, 57]. In the context of study 3, we structured model input and

prompts to minimize detail removal and maximize elaboration for all details in the original sentence. We used GPT-3.5

Turbo in May 2023 with temperature set to 1.0 and the rest of the parameters set to default OpenAI API settings.

We generated summaries that did not remove and instead elaborated on details by restricting the model input and

changing our prompting technique. Rather than input the entire High summary, as in study 2 (§5.1.1), we provided

GPT-3.5 with a single sentence at a time and instructed it to explain, rather than remove, any information from the

original sentence. To avoid having subsequent sentences repeat themselves, the prompt included the history of previous

simplified sentences and instructed the model not to explain a concept it had explained above. In addition to the

instructions, the prompt included one example of a scientific sentence and its associated simplified version (referred to

as a ‘few-shot’ prompt setting).

We used two prompts, one for Medium summaries and one for Low. The Medium prompt instructed the model to

rewrite the sentence for someone very familiar with the topic of the sentence, with a target reading level of a college

educated adult. For the Low summaries the target user was someone who was not at all familiar with the sentence’s

topic, with a target reading level of 5th grade. 5th grade was chosen based on previous work in generating plain

language summaries [12], and on our observations that selecting a high school reading level, as we had done for the

expert-authored summaries, produced text similar to the Medium prompt. The full prompts are included in Appendix D.

Table 1 provides examples of the generated summaries.

6.1.2 Measuring information content in summaries. Before collecting participant response to the summaries, we analyzed

how information content differed between the summary versions in the three studies. We used four automatic measures

and one manual measure of information content based on previous work studying alignment between scientific text

and summaries [37, 43, 55]:

SummaC: Laban et al. [56] introduced an natural language inference (NLI) approach to summary consistency.

The method uses an NLI model to score each sentence from a source summary with sentences from a target

summary on how much the target sentences follow from the source sentence (i.e., is true given the source

sentence). We use the SummaC-Conv model using the default settings from the original metric library.
8

SuperPAL: Ernst et al. [37] introduced a supervised method for scoring alignment between source and target

summaries by annotating spans of text representing information units (i.e., a standalone fact). Using these

annotated spans, the authors trained a model for the task of identifying information alignment between a source

and target summary. In an evaluation of alignment scores for scientific summaries, SuperPAL was found to be

the most effective at identifying aligned claims between the source and target [55]. We use the bui-nlp/superpal

model
9
with the default settings.

8
https://github.com/tingofurro/summac/tree/master

9
https://github.com/martiansideofthemoon/longeval-summarization
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Source Complexity SummaC SuperPAL ROUGE-L BERTScore Info. Units

Expert - Study 1

Medium 0.086.188 0.227.012 0.211.115 0.8790.026 0.557.255

Low 0.098.194 0.225.001 0.197.102 0.8780.024 0.478.241

Machine - Study 2

Medium 0.782.359 0.673.161 0.730.308 0.9570.047 0.810.317

Low 0.290.360 0.384.250 0.203.128 0.8820.027 0.418.264

Machine - Study 3

Medium 0.839.263 0.722.042 0.439.124 0.9260.022 0.998.014

Low 0.750.302 0.684.077 0.313.112 0.9100.022 0.977.062

Table 4. Differences in automated information content measures between summary versions.

ROUGE-L [60]: ROUGE is a common score for assessing summary quality by scoring the number of n-gram

overlaps between source and target summaries. ROUGE has also been used as a baseline approach to aligning

sentences between source and target summaries [43]. Following this prior work, we use ROUGE-L, which mea-

sures the longest common subsequence of tokens between a source and target sentence. We use the Huggingface

evaluate package for calculating ROUGE-L.
10

BERTScore [108]: BERTScore is a common score for summary evaluation that computes semantic similarity

using pre-trained contextual embeddings from the BERT model [33]. We use the Huggingface evaluate package

for calculating BERTScore and report the F1 score.
11

For each measure we take the average maximum alignment score for sentences in the High summaries with sentences

from the Medium and Low summaries. If a sentence in the High summary has low alignment scores for all sentences in

the Medium or Low summaries, this would suggest that the information is not reported in the summaries.

In addition to the automatic measures reported above, we ran a manual evaluation of the information content between

each of the summary version. We annotate all information units—defined similar to prior work as proposition-level

semantically equivalent statements [37]—for the High summaries and count how many of these units appear in the

Medium and Low summaries. Annotating information units at this level has been used in prior work for evaluating

claims in scientific summaries [55]. In our summaries these units were predominately definitions of terminology,

reporting of results, methodological details, and background explanations. Our codes are provided in the supplementary.

Table 4 lists the scores for summaries’ information content. Across all measures and versions, the Low summaries

score lower than the Medium summaries. The most common information skipped in all the summaries (based on

our manual evaluation of information units) was information about the findings from the studies. This aligns with

feedback from our writer, who said that in the Low summaries they focused on only the most import finding, while in

the Medium summaries they included more details. One reason for the lower scores on most automatic measures for

the expert summaries might be due to the writer using fewer overlapping words compared to the models. The same

can explain the higher ROUGE-L score for the study 2 Medium summaries, which used many spans verbatim from

the original summaries. In comparison to the summaries from studies 1 and 2, though, the summaries in study 3 have

consistently higher scores and differences between the Medium and Low versions are within 1.5 standard deviations.

6.2 Results

10
https://github.com/huggingface/evaluate/tree/main

11
https://github.com/huggingface/evaluate/tree/main
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Fig. 7. Distribution of ratings for each reading experience measure across complexity and participant topic familiarity for study 3
(machine generated summaries with information restriction).

6.2.1 Reading experience measures. Compared to the first two studies, there were smaller differences in reading

experience ratings between the three complexity versions. Figure 4c plots the overall ratings. While participants

generally rated Low summaries as easier to read (𝑑ease = 0.166, 𝑝 = 1.0, 𝑆𝑀𝐷 = 0.29) and understand (𝑑understand = 0.734,

𝑝 = 0.051, 𝑆𝑀𝐷 = 0.24) compared to High summaries, these differences were smaller and not significant.

Participants who had the lowest familiarity of the summary’s topic again rated the Low summaries as significantly

easier to read and understand than the High summaries (𝑑𝑒𝑎𝑠𝑒 = 0.362, 𝑝 = 0.019, 𝑆𝑀𝐷 = 0.27; 𝑑𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑 = 0.420,

𝑝 = 0.003, 𝑆𝑀𝐷 = 0.28). Similar to studies 1 and 2, participants with more familiarity rated the three summary versions

similarly, with no significant differences between them. Figure 7 plots ratings broken down by familiarity.

6.2.2 Skipped sections. In Study 3, participants on average skipped 0.554 (std=1.220) sections. Similar to studies 1 and

2, skipped sections were lowest for the High summaries (mean=0.490, std=1.134) compared to the Low (mean=0.529,

std=1.209) and Medium (mean=0.642, std=1.310) summaries. Participants who rated their topic familiarity as a 3 out

of 5, indicating moderate familiarity, skipped significantly more sections in the Medium summaries compared to the

High summaries (𝑑𝑢𝑛𝑐𝑙𝑖𝑐𝑘𝑒𝑑 = 0.472, 𝑝 = 0.026, 𝑆𝑀𝐷 = 0.57) and Low summaries (𝑑𝑢𝑛𝑐𝑙𝑖𝑐𝑘𝑒𝑑 = 0.583, 𝑝 = 0.004,

𝑆𝑀𝐷 = 0.51).
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6.2.3 Original article requests. Similar to study 2, participants requested the original article from the Low summaries

more often (mean=18.7%) than either the Medium (mean=12.8%) or High summaries (mean=12.8%). Also supporting our

results from study 2, participants in study 3 with the lowest familiarity requested articles significantly more often after

reading the Low summaries compared to the Medium summaries (𝑑𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = 0.108, 𝑝 = 0.023, 𝑆𝑀𝐷 = 0.39) and High

summaries (𝑑𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = 0.110, 𝑝 = 0.023, 𝑆𝑀𝐷 = 0.34). Table 10 in the appendix lists all pairwise differences.

7 DISCUSSION

In this paper we set out to understand how general audience readers with different background knowledge respond

to alternative versions of scientific language. We conducted three studies, using both human-written and machine-

generated text, investigating the effect of language complexity and topic familiarity on reading experience and behavior.

We found that the lowest complexity summaries, both human-written and machine-generated, provided the most

benefit to readers with little familiarity of a scientific topic (e.g., those who had never heard of the summary’s topic

before). Not only did low complexity summaries make it easier for low familiarity participants to read and understand

the summaries, but in the case of machine-generated summaries in study 2 and 3, the low complexity summaries also

encouraged them to request the original scientific article more, engaging with the science beyond what was required

for the study.

In most cases, though, the benefits of low complexity came at the cost of reduced information content. In our first

two studies, low complexity summaries provided less information overall than high complexity summaries, especially

in reporting multiple findings (§6.1.2). In our third study, when we encouraged models to generate plain language that

preserved details, we found that only readers with the lowest topic familiarity rated the longer plain summaries as easier

to read and understand (§6.2). Most science communication text focuses on the most important findings and theories

to convey by default [1, 8]. This is because reporting all scientific findings in plain language requires explaining any

concepts an audience might not know [105], leading to long explanations that risk reader fatigue and loss of interest.

Our findings from study 3 align with this work by showing that conveying complete information in plain language

leads to longer summaries that were only easier to read for those who had no background in the summary’s topic.

While lower complexity summaries might be ideal for low familiarity readers, they may invite high familiarity

readers to ignore information. Across the three studies, participants with higher familiarity skipped sections of low

complexity summaries significantly more than high complexity summaries. This could potentially be due to lack of

interest, or feeling like the summary was talking down to them [95]. In some cases, the difference in number of skipped

sections was close to one section out of five. While not all information may be necessary to convey in a summary, the

skipped information was often the most risky to skip: the study’s limitations.

Our findings are the first to illustrate the benefits and drawbacks of simplification for general audience readers with

varying background knowledge. Prior work developing systems to support science communication has predominantly

focused on providing a single version of simplified language and treated general audience readers as a single, monolithic

group [31, 42]. While science communicators have a strong intuition that adapting language to different audiences is

important [8], no work has taken the step of showing that such adaptation can provide measurable benefits. In our

three studies, we show that the simplest summaries benefit readers with the least knowledge of a topic the most, and

that more complex summaries are best for those with greater background knowledge.
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7.1 Guidance on adaptive plain language

This paper provides guidance on designing generated plain language summaries for both science communicators and

interface designers. Based on our findings we make the following suggestions:

• Low complexity for low familiarity/information The least complex plain language summaries are better

when one or both of the following is true: there is no requirement to convey complete information (§4 & 5), or

the reader has little to no familiarity in the topic (in this case longer, plain summaries can be used, §6).

• High complexity for high familiarityMore complex summaries—even with text drawn from the research

paper—are better when audiences have more background knowledge (even if they are not experts in a field), in

order to convey more information and keep readers engaged (§4 & 5).

• Plain language for high information, when necessary LMs can be used to generate plain language summaries

that preserve details (§6.1.1); however, these summaries only benefit those with little knowledge of a scientific

topic (§6) and should be used only when necessary because it leads to much longer text that risks losing readers

that have even moderate topic familiarity.

Science communicators can use our findings to guide their efforts when reaching different audiences. If an article is

intended for readers with no familiarity in a topic, a science writer could meet these needs by generating and editing a

very plain summary or by assessing their own writing with automatic complexity measures (§4.1.3). In contrast, if a

science communicator is worried about losing the engagement of readers with more topic familiarity, they could focus

on a more complex summary, either generated or written. Further, a writer could create multiple alternative versions of

a summary suited for different audiences quickly using our generation techniques (§5.1.1 & 6.1.1).

Interface designers can also leverage the techniques we illustrate in our studies to create interactive and adaptive

reading interfaces. For example, a reading interface could generate a new summary on-the-fly based on the reader,

or allow readers to interactively select different versions as they read. Short user surveys could be used to determine

the ideal adaptation [102], similar to the method employed in this paper (§4.1.5). A complementary method would

be to model users through behavioral signals, a common approach in the education literature [30, 54]. We observed

that participants with higher familiarity were more likely to skip sections when the complexity was too low. A system

that adapts scientific complexity could monitor how much skipping a reader engages in, increasing complexity with

increased skipping. Another approach to modeling a user in this context is to analyze past reading or writing behavior

[6]. A system could predict an ideal complexity based on the terminology and concepts contained in documents a user

already knows. We recommend some level of user control for adaptive language. While users might not always know

the ideal level of complexity for themselves, an adaptive language system could also include a knob or dial that allows a

reader to scan through possible versions if the current adaption is not ideal.

One major hurdle in deploying systems using language models is the risk of hallucinations. We argue that such

hallucinations necessitate human expert involvement. Rather than expert involvement being a limitation, though, we

envision it improving human-human communication across the barriers that scientific language can impose. Science

communication is ideally a conversation, not only a transmission of information [74]. Our hope is that requiring

expert oversight will help science communicators quickly create summaries that serve diverse audiences while also

encouraging communicators to think deeply about the audiences they are reaching with their work.
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8 CONCLUSION

In this paper, we investigate how general audience readers respond to scientific summaries written or generated at

different levels of complexity. Across our three studies, using expert-written and machine-generated summaries, we

show that the ideal text is based on a participant’s familiarity of a topic. Low familiarity participants rated the low

complexity summaries as easiest to engage with. High familiarity participants rated the summaries equally regardless of

complexity, while skipping more sections of low complexity summaries. We also find that using traditional generation

or science communication techniques often leads to loss in information as language becomes less complex, but that

new generative models are capable of generating plain text while explaining complex topics, retaining much of the

information of higher complexity summaries. Our findings highlight the tradeoffs in adapting language complexity for

different audiences and provide a path forward for communicating scientific information to a wider range of people.
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A AUTOMATED COMPLEXITY MEASURES

Below we describe in more details the automated complexity meaures used in §4.1.2.

Thing Explainer out-of-vocabulary (TE): We count the ratio of words outside the top 1,000 most common

words in English. The words are based on Wiktionary’s contemporary fiction frequency list.
12

This method was

popularized by the popular book Thing Explainer, which explains scientific concepts using only the 1,000 most

frequent words in English [70].

Function words In medical communication, the proportion of function words (e.g., prepositions, auxiliary or

verbs) was found to be positively correlated with perceived and actual readability [58, 59]. We measure the

proportion of function words in a sentence using scispacy [73].

Language model perplexity (GPT ppl.) Language models are systems for predicting words in a sequence. The

perplexity of the model is a measure of how different a sequence of text is from the language the model was

trained on. Perplexity has been found to correlate with perceived and actual reading difficulty [23, 82]. We use

the GPT model [83] to measure language model perplexity, as it was trained on common English (as opposed to

scientific text).

B ORDINAL REGRESSION FOR LIKERT-SCALE VARIABLES

Measure Model Study 1 𝑝 Study 2 𝑝 Study 3 𝑝

Reading Ease

CLMM 168.28 <0.001 94.39 <0.001 14.04 <0.01
LMM 181.04 <0.001 108.33 <0.001 15.92 <0.05

Understanding

CLMM 118.23 <0.001 51.22 <0.001 9.41 0.116

LMM 134.63 <0.001 55.08 <0.001 12.39 <0.05

Interest

CLMM 57.38 <0.001 18.22 <0.01 10.11 0.116

LMM 61.64 <0.001 26.88 <0.001 9.32 0.107

Value

CLMM 18.66 <0.001 11.09 <0.05 7.08 0.132

LMM 19.64 <0.001 10.65 <0.01 8.82 0.107

Table 5. Likelihood ratio test statistics and 𝑝-values for likelihood ratio test of cumulative link (CLMM) and linear (LMM)mixed-effects
models. Significant values are bolded. 𝑝-values are adjusted using Holm-correction.

As our reading experience measures were measured on a Likert-style scale, the linear mixed effects model (LMM)

estimates could be ill-suited for analysis, especially if these measures were not sufficiently normally distributed. As an

alternative, we additionally fit analogous cumulative link mixed-effects models (CLMM) from the ordinal R package

[21] and conducted likelihood ratio tests, which are similar to F-tests but more conservative, on the interaction term of

complexity level of article familiarity.

12
https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/Contemporary_fiction
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Prompt Level Summary

Second-grade

student

In this study, people who could do more than 40 pushups were associated with a reduced risk

of having a heart problem in the next 10 years, compared to those who could do fewer than 10.

The study also found that people who could do more than 10 pushups had a reduced risk of

having a heart problem, and that the risk decreased as the number of pushups increased.

Seventh-grade

student

This study found that people who could do more than 40 pushups were less likely to have a

heart problem in the next 10 years. The study also found that the more pushups someone

could do, the less likely they were to have a heart problem.

College student This study found that people who could do more than 40 pushups had a significantly lower

risk of having a cardiovascular disease event, compared to those who could do 10 or fewer.

This may be because those who could do more pushups also had better baseline cardiovascular

disease risk factors. They also found that people who could do 11 or more pushups at the start

of the study had a lower risk of having a cardiovascular disease event during the study.

Table 6. Examples of the generated summaries with different prompts. Note that the prompts were not used to select complexity
levels. This part of the summaries was under the heading “What did the paper find?” Notice how the second grade prompt is slightly
longer and uses larger words (e.g., “associated with reduced risk” compared to “less likely to”) than the seventh grade prompt. At the
same time, the college student prompt uses more complex language (e.g., “cardiovascular disease event”) compared to both other
generations.

To accurately identify the effect complexity has on our measures and its interaction with topic familiarity, we define

two models for each measure. Each model includes the same random effects of paper ID and participant ID to control

for variation among papers and participants.

(1) LMMfull : Containing fixed effects for the complexity version, topic familiarity, an interaction term for familiarity

and complexity, and random effects for paper and participant IDs.

(2) LMMnone : Containing a fixed effect for topic familiarity and random effects for paper and participant IDs.

With these models we evaluate how complexity affects reading measures (e.g., reading ease) by comparing the

model goodness-of-fit between LMMfull and 𝐿𝑀𝑀𝑛𝑜𝑛𝑒 using the 𝜒2 likelihood-ratio test. If LMMfull has a significantly

stronger fit, this suggests that complexity has a significant effect on that reading measure.

Table 5 lists the 𝑝-values for the likelihood ratio tests on the CLMM and LMM models. The 𝑝-values are similar

across the two methods, with the one exception being a significant difference in understanding for Study 3. To confirm

our findings of differences across complexity measures, we additionally ran Mann–Whitney 𝑈 -tests on the reading

experience ratings. While the studies were within-subjects, we treated the data as unpaired because familiarity ratings

differed across the same participant, and therefore were not grouped together. While these tests did not control for

participant or paper random effects (as the post-hoc 𝑡-tests we report in the results do), the findings remained similar to

those reported in Tables 8, 9 and 10. Following prior work [12, 47, 75], we report results from the parametric tests (i.e.,

LMMs and pairwise difference 𝑡-tests) in the paper.

C GENERATING SUMMARIES - STUDY 2

GPT-3 was not designed to explicitly vary text complexity, so while generations might vary naturally in complexity due

to the changes in prompt, there is no guarantee that prompts will align with complexity (i.e., prompting GPT-3 with

29



CHI ’24, May 11–16, 2024, Honolulu, HI, USA August et al.

“Summarize for a first grade student” will not necessarily lead to lower complexity than prompting with “tenth grade

student”). In a preliminary analysis of the summaries, we found that the summaries, while tending toward simpler with

lower grades, could still be quite complex in the first grade prompted version and much simpler at higher grade levels.

Table 6 provides examples of generations and associated prompts.

There are automatic methods for scientific information extraction [22] and PDF parsing [64, 94] that could in the

future be used extract information directly from a research paper PDF. We leave such extensions to future work, as

our goal was to explore the feasibility of automatically adjusting language complexity. Any errors introduced by other

automated methods (e.g., incorrect text from PDF parsing) could muddy our ability to identify how alternate complexity

levels perform in our envisioned context.

D GENERATING SUMMARIES - STUDY 3

The full prompts were:

• Low: You are a helpful assistant who will rewrite 5-10 scientific sentences for a reader who is not at all familiar

with the sentence’s topic. You will be given one sentence after another. For each sentence, define any necessary

terms and provide any background knowledge that a reader who is not at all familiar with this topic might need.

Your target grade level is 5th grade. You do not need to explain a term or concept you have already explained.

Your goal is to help a lay reader understand all the information contained in the original sentence. Below is an

example.

Input sentence: The accretion of terrestrial planets from the solar nebula has been a subject of extensive theoretical

modeling and simulation.

Simplified output: The growth of rocky planets like the Earth by adding particles, called accretion, from the

cloud of dust and gas surrounding the early Sun, called the solar nebula, has been studied a lot using theoretical

calculations and computer simulations. Theoretical calculations refer to math that is used to make predictions

about how things happen based on a particular theory. Computer simulations are programs that model how a

system works.

• Medium: You are a helpful assistant who will rewrite 5-10 scientific sentences for a reader who is very familiar

with the sentence’s topic. You will be given one sentence after another. For each sentence, define any necessary

terms and provide any background knowledge that a reader who is very familiar with this topic might need. Your

target grade level is a college-educated adult. You do not need to explain a term or concept you have already

explained or that the reader is likely to know. Your goal is to help the reader understand all the information

contained in the original sentence. Below is an example.

Input sentence: The accretion of terrestrial planets from the solar nebula has been a subject of extensive theoretical

modeling and simulation.

Simplified output: The formation of terrestrial planets through accumulating dust, gas, and debris, called accretion,

from the solar nebula, has been studied extensively using theoretical calculations and computer simulations.

E FACTUALITY IN GENERATED SUMMARIES

Out of 120 generated summaries in study 2 (6 sections × 10 papers × 2 complexities), 22 were labelled as containing any

hallucinated content. The labels were mutually exclusive. There were three types of hallucinations we identified: correct
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Hallucination type Example Reason % Generations

Incorrect additional

information

The study found that the babies of women

who ate nuts during pregnancy were less

likely to have certain health problems.

Nothing in study about

health problems

7.5%

Correct additional

information

These cells work together to make sure

that we feel pain when we are hurt. This is

important because it helps us to avoid

getting hurt again.

Nothing in original

article about the

importance of pain

sensation

2.5%

Reverse direction of

findings

This study found that spending more time

playing video games can lead to more

aggressive behavior.

Finding was that time

spent playing video

games did not lead to

more aggressive

behavior

4.2%

Table 7. Three types of hallucinations encountered in our generated summaries.

information not from the original text, incorrect information not from the original text and reversing the direction of

findings. Table 7 includes examples of these three hallucinations.

The extent and kind of hallucinations in our summaries can tell us what risk such hallucinations pose and how

much effort an expert must invest to make the summaries publishable. For example, if the majority of hallucinations

are new but correct information (a common type of hallucination [19]), then they pose less of a risk and require less

expert knowledge to fix than if the hallucinations instead reverse the direction of a found effect (another type of

hallucination [32]). We generated summaries with no restriction on hallucinated content. After generation, one author

labelled all generations for hallucinated content.

Including correct information not from the original text occurred in 3 hallucinations. Usually these hallucinations

included text about the study findings with no associated text from the original source text, or else hallucinated the

existence of graphs from additional studies (e.g., “This chart shows the probation rates of the US population ...”). These

hallucinations reported correct information, even though the information was not reported in the source text.

9 hallucinations included incorrect information not from the original text. These hallucinations added unrelated

findings to the summary that were not reported in the study. Examples include hallucinating an association between

asthma and nut intake, while the original article reported on nut intake and neuropsychological development.

Including correct and incorrect information not from the original text are similar to extrinsic hallucinations in the

summarization literature [41], or information insertion in the simplification literature [32]. Both refer to hallucinations

adding information not found in the original source.

Reversing the direction of findings occurred in 5 hallucinations. These hallucinations reported the exact opposite

result than was reported in the original study. These hallucinations are considered intrinsic hallucinations, or information

substitution which are hallucinations that include information in direct contrast to the original source [32, 67].

These three types of hallucinations are well-documented in literature studying generative model hallucinations

[19, 32, 41, 67]. We add to this previous literature by showing how such hallucinations occur in this reading context.
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We also explored using automated methods to identify hallucinations. We tried two commonly used automated

measures for hallucinations, SummaQA [91] and entity-level F1 [72]. SummaQA uses a BERT-based question answering

model to answer questions extracted from the source text with the summary text. We use the original extracted sentences

as the source text. Entity-level F1 measures the number of entities that occur in a generated summary compared to the

ground truth summary. We use scispacy [73] to extract entities. We observed no significant differences in either score

between generated summaries with or without hallucinations (two-sided 𝑡-test 𝑡118 = 0.04, 𝑝 = 0.972 for SummaQA

F-score, 𝑡118 = 1.90, 𝑝 = 0.119 for entity-level F1 after Holm correction). When inspecting the scores of generations, we

also observed that both scores skewed positively (i.e., measured less hallucinated content) towards summaries that had

language more similar to the original. This led to the scores negatively impacting the lower complexity summaries

since they used language more distinct from the original researcher version. Based on these results, we did not use any

automated factuality scores to curate the summaries.

F PAIRWISE TEST STATISTICS

Below we report all test statistics for pairwise comparisons in the three studies.
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Familiarity 𝑑𝐿𝑜−𝑀𝑒 𝑝 𝑑𝐿𝑜−𝐻𝑖 𝑝 𝑑𝑀𝑒−𝐻𝑖 𝑝

Reading Ease

1 0.554 <0.0001 1.490 <0.0001 0.936 <0.0001
2 0.103 0.621 0.782 0.001 0.679 0.003
3 0.197 0.391 0.695 0.013 0.498 0.059

4 0.101 0.817 0.609 0.544 0.508 0.588

All 0.238 0.069 0.894 <0.0001 0.655 <0.0001

Understanding

1 0.458 <0.0001 1.160 <0.0001 0.701 <0.0001
2 0.022 0.910 0.693 0.002 0.671 0.002
3 0.172 0.597 0.391 0.240 0.219 0.597

4 0.160 1.0 0.127 1.0 -0.033 1.0

All 0.203 0.094 0.593 <0.0001 0.390 0.006

Interest

1 0.296 0.021 0.943 <0.0001 0.647 <0.0001
2 -0.007 0.975 0.298 0.593 0.305 0.593

3 0.024 1.0 -0.009 1.0 -0.033 1.0

4 0.864 0.220 0.261 0.603 -0.603 0.520

All 0.294 0.085 0.373 0.042 0.079 0.613

Value

1 0.314 0.020 0.509 <0.0001 0.195 0.104

2 -0.012 1.0 0.009 1.0 0.021 1.0

3 -0.087 1.0 -0.099 1.0 -0.012 1.0

4 0.329 1.0 -0.123 1.0 -0.451 1.0

All 0.136 0.996 0.074 1.00 -0.062 1.00

Skipped Sections

1 0.041 0.994 0.051 0.994 0.009 0.994

2 -0.107 0.813 -0.007 0.941 0.099 0.813

3 -0.252 0.056 -0.008 0.943 0.244 0.056

4 0.285 0.202 0.682 0.008 0.398 0.202

All -0.008 0.892 0.179 0.020 0.188 0.020

Article Requests

1 0.009 0.768 0.056 0.206 0.047 0.270

2 -0.026 0.659 -0.184 0.007 -0.159 0.017
3 -0.078 0.439 0.027 0.685 0.105 0.287

4 0.063 1.0 0.018 1.0 -0.045 1.0

All -0.008 1.0 -0.021 1.0 -0.013 1.0

Table 8. Post-hoc (two-sided) tests for pairwise differences in fixed-effects estimates between complexity versions and across all
participant topic familiarities for study 1 with expert-written summaries. ‘All’ topic familiarity refers to pairwise differences across
complexity levels without a topic familiarity subgroup (e.g., average difference across complexity levels.) This table reports the
difference in fixed-effects estimates 𝑖 − 𝑗 and Holm-Bonferroni-corrected 𝑝-values [49] under our mixed-effects model, where 𝑖 and 𝑗

correspond to complexity options. — 𝐿𝑜 = Low,𝑀𝑒 =Medium, and𝐻𝑖 = High. Statistically significant 𝑝-values are bold. For example,
in Table 8 in the column for 𝑑𝐿𝑜−𝐻𝑖 and row for “Reading Ease,” and “1” in topic familiarity we can interpret the result as participants
with a 1 topic familiarity rated the Low complexity, on average, 1.490 points higher for reading ease (out of 5) compared to the High
complexity when controlling for participant and paper.
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Familiarity 𝑑𝐿𝑜−𝑀𝑒 𝑝 𝑑𝐿𝑜−𝐻𝑖 𝑝 𝑑𝑀𝑒−𝐻𝑖 𝑝

Reading Ease

1 1.385 <0.0001 1.645 <0.0001 0.260 0.120

2 0.310 0.274 0.660 0.024 0.350 0.274

3 0.392 0.101 0.321 0.161 -0.071 0.683

4 0.057 1.0 -0.045 1.0 -0.102 1.0

5 0.216 1.0 0.093 1.0 -0.122 1.0

All 0.472 <0.0001 0.535 <0.0001 0.063 0.455

Understanding

1 0.836 <0.0001 1.103 <0.0001 0.267 0.110

2 0.369 0.267 0.630 0.035 0.262 0.269

3 0.035 0.850 0.223 0.678 0.188 0.678

4 0.030 1.0 -0.077 1.0 -0.107 1.0

5 0.127 0.702 -0.266 0.702 -0.394 0.514

All 0.279 0.004 0.323 0.001 0.043 0.622

Interest

1 0.590 0.001 0.909 <0.0001 0.319 0.055

2 0.134 1.0 0.125 1.0 -0.009 1.0

3 -0.047 1.0 -0.064 1.0 -0.018 1.0

4 -0.004 1.0 -0.009 1.0 -0.006 1.0

5 0.251 1.0 0.052 1.0 -0.199 1.0

All 0.185 0.077 0.202 0.077 0.017 0.818

Value

1 0.069 0.674 0.407 0.031 0.339 0.079

2 -0.220 0.970 0.009 0.970 0.229 0.970

3 -0.173 1.0 -0.161 1.0 0.012 1.0

4 0.151 0.665 -0.085 0.665 -0.236 0.427

5 0.270 0.616 -0.101 0.720 -0.371 0.570

All 0.020 1.0 0.014 1.0 -0.006 1.0

Skipped Sections

1 0.083 1.0 -0.058 1.0 -0.142 1.0

2 -0.333 0.645 -0.143 0.924 0.190 0.924

3 0.100 1.0 -0.006 1.0 -0.106 1.0

4 0.367 0.123 0.277 0.234 -0.090 0.631

5 0.235 0.424 0.900 0.011 0.665 0.066

All 0.090 0.553 0.194 0.138 0.103 0.553

Article Requests

1 0.095 0.299 0.057 0.603 -0.038 0.603

2 0.214 0.036 0.001 0.991 -0.213 0.036

3 0.001 1.0 -0.046 1.0 -0.047 1.0

4 0.048 1.0 0.006 1.0 -0.042 1.0

5 0.069 1.0 0.042 1.0 -0.026 1.0

All 0.085 0.015 0.012 0.699 -0.073 0.035

Table 9. Study 2 with machine-generated summaries and no restriction on information content. See Table 8 for examples of pairwise
comparison interpretation.
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Familiarity 𝑑𝐿𝑜−𝑀𝑒 𝑝 𝑑𝐿𝑜−𝐻𝑖 𝑝 𝑑𝑀𝑒−𝐻𝑖 𝑝

Reading Ease

1 0.149 0.260 0.362 0.019 0.213 0.182

2 0.340 0.165 0.669 0.002 0.330 0.165

3 -0.134 1.0 -0.075 1.0 0.059 1.0

4 0.235 1.0 0.201 1.0 -0.034 1.0

5 0.319 1.0 -0.327 1.0 -0.646 1.0

All 0.182 1.0 0.166 1.0 -0.016 1.0

Understanding

1 0.186 0.147 0.420 0.003 0.234 0.111

2 0.033 1.0 0.174 1.0 0.141 1.0

3 -0.169 1.0 -0.062 1.0 0.107 1.0

4 0.298 0.859 0.523 0.527 0.225 0.859

5 -0.228 1.0 -0.456 1.0 -0.228 1.0

All 0.024 1.0 0.120 1.0 0.096 1.0

Interest

1 -0.018 0.902 0.295 0.091 0.313 0.080

2 0.141 0.777 0.342 0.373 0.201 0.777

3 -0.291 0.613 -0.173 0.853 0.117 0.853

4 -0.162 1.0 0.103 1.0 0.265 1.0

5 0.834 1.0 0.383 1.0 -0.450 1.0

All 0.101 1.0 0.190 1.0 0.089 1.0

Value

1 -0.014 0.922 0.213 0.269 0.226 0.269

2 -0.025 1.0 0.165 1.0 0.190 1.0

3 -0.380 0.180 0.037 0.856 0.417 0.180

4 0.494 0.454 0.870 0.116 0.376 0.454

5 2.245 0.177 2.385 0.200 0.139 0.906

All 0.464 0.139 0.734 0.051 0.270 0.284

Skipped Sections

1 0.023 1.0 0.110 1.0 0.087 1.0

2 -0.062 1.0 -0.015 1.0 0.047 1.0

3 -0.583 0.004 -0.110 0.529 0.472 0.026
4 0.167 1.0 0.074 1.0 -0.093 1.0

5 -0.055 1.0 -0.203 1.0 -0.148 1.0

All -0.102 1.0 -0.029 1.0 0.073 1.0

Article Requests

1 0.108 0.023 0.110 0.023 0.002 0.963

2 -0.015 0.805 -0.079 0.618 -0.064 0.652

3 0.101 0.347 0.082 0.352 -0.018 0.783

4 -0.135 0.683 -0.000 1.0 0.135 0.683

5 -0.100 1.0 0.039 1.0 0.138 1.0

All -0.008 1.0 0.030 1.0 0.039 1.0

Table 10. Study 3 with machine-generated summaries and restriction on information content. See Table 8 for examples of pairwise
comparison interpretation.
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